Dendrobium catenatum Lindl. Water Extracts Attenuate Atherosclerosis

Author:

Han Jichun1ORCID,Dong Jing1,Zhang Rui1ORCID,Zhang Xiaofeng1,Chen Minghan1,Fan Xiangcheng1ORCID,Li Maoru1,Li Jiajing1,Zhu Junyi1ORCID,Shang Jing1ORCID,Yue Yunyun1ORCID

Affiliation:

1. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China

Abstract

Objectives. Dendrobium catenatum Lindl. (DH) is a Chinese herbal medicine, which is often used to make tea to improve immunity in China. Rumor has it that DH has a protective effect against cardiovascular disease. However, it is not clear how DH can prevent cardiovascular disease, such as atherosclerosis (AS). Therefore, the purpose of this study is to study whether DH can prevent AS and the underlying mechanisms. Methods. Zebrafish larvae were fed with high-cholesterol diet (HCD) to establish a zebrafish AS model. Then, we used DH water extracts (DHWE) to pretreat AS zebrafish. The plaque formation was detected by HE, EVG, and oil red O staining. Neutrophil and macrophage counts were calculated to evaluate the inflammation level. Reactive oxygen species (ROS) activity, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity in zebrafish were measured to reflect oxidative stress. The cholesterol accumulation and the levels of lipid, triglyceride (TG), and total cholesterol (TC) were measured to reflect lipid metabolism disorder. Then, parallel flow chamber was utilized to establish a low shear stress- (LSS-) induced endothelial cell (EC) dysfunction model. EA.hy926 cells were exposed to LSS (3 dyn/cm2) for 30 min and treated with DHWE. The levels of ROS, SOD, MDA, glutathione (GSH), and glutathiol (GSSG) in EA.hy926 cells were analysed to determine oxidative stress. The release of nitric oxide (NO), endothelin-1 (ET-1), and epoprostenol (PGI2) in EA.hy926 cells was measured to reflect EC dysfunction. The mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in EA.hy926 cells was detected to reflect EC dysfunction inflammation. Results. The results showed that DHWE significantly reduced cholesterol accumulation and macrophage infiltration in early AS. Finally, DHWE significantly alleviate the lipid metabolism disorder, oxidative stress, and inflammation to reduce the plaque formation of AS zebrafish larval model. Meanwhile, we also found that DHWE significantly improved LSS-induced EC dysfunction and oxidative stress in vitro. Conclusion. Our results indicate that DHWE could be used as a prevention method to prevent AS.

Funder

Major science and technology projects of Yunnan Province

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3