Prediction of Biogas Yield from Codigestion of Lignocellulosic Biomass Using Adaptive Neuro-Fuzzy Inference System (ANFIS) Model

Author:

Fajobi Moses Oluwatobi12ORCID,Lasode Olumuyiwa Ajani1ORCID,Adeleke Adekunle Akanni3ORCID,Ikubanni Peter Pelumi4ORCID,Balogun Ayokunle Olubusayo4ORCID,Paramasivam Prabhu5ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria

2. Ladoke Akintola University of Technology, Open and Distance Learning Centre, Ogbomoso, Nigeria

3. Nile University of Nigeria, Abuja, Nigeria

4. Department of Mechanical Engineering, Landmark University, Omu-Aran, Nigeria

5. Department of Mechanical Engineering, College of Engineering and Technology, Mattu University, Mettu, Ethiopia

Abstract

One of the major challenges confronting researchers is how to predict biogas yield because it is a herculean task since research in the field of modeling and optimization of biogas yield is still limited, especially with the adaptive neuro-fuzzy inference system (ANFIS). This study used ANFIS to model and predict biogas yield from anaerobic codigestion of cow dung, mango pulp, and Chromolaena odorata. Asides from the controls, 13 experiments using various agglomerates of the selected substrates were carried out. Cumulatively (for 40 days), the agglomerate that comprised 50% cow dung, 25% mango pulp, and 25% Chromolaena odorata produced the highest volume of biogas, 4750 m3/kg, while the one with 50% cow dung, 12.5% mango pulp, and 37.5% Chromolaena odorata produced the lowest volume of biogas, 630 m3/kg. The data articulated for modeling were those of the optimum biogas yield. Data implemented for modeling comprised two inputs (temperature in Kelvin and pressure in kN/m2) and one output (biogas yield). The Gaussian membership function (Gauss-mf) was implemented for the fuzzification of input variables, while the hybrid algorithm was selected for the learning and mapping of the input-output dataset. The developed ANFIS architecture was simulated at varied membership functions, MFs, and epoch numbers to determine the minimum root mean square error, RMSE, and maximum R-squared R2 values. The one that fulfilled the conditions was considered to be the optimized model. The minimum RMSE and maximum R2 values recorded for the developed model are 14.37 and 0.99784, respectively. The implication is that the model was able to efficiently predict not less than 99.78% of the experimental data. These results prove that the ANFIS model is a reliable tool for modeling data and predicting biogas yield in the biomass anaerobic digestion process. Therefore, the use of the developed ANFIS model is recommended for biogas producers and other allies for predicting biogas yield adequately.

Funder

Mattu University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3