A Complex Evaluation and Optimization Approach for Oxygen-Enriched Combustion Characteristics of Blended Fuels Based on Response Surface Methodology

Author:

Liu Y. C.1,Zhang H.1,Luo Z. M.1,Qing S.1ORCID,Zhang A. M.1,Yang S. P.1

Affiliation:

1. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Department of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

Abstract

With the energy consumption increasing, the coal supply in China has been becoming tight, which has made it difficult for thermal power generation in Yunnan Province. Making full use of local inferior coal and biomass resources in Yunnan can remedy the lack of fuel in power plants. In this paper, an oxygen-rich atmosphere thermogravimetric experiment was performed for a blended sample of Xiaolongtan lignite, Yiliang tobacco rod, and Fuyuan bituminous coal. The combustion characteristics of the mixed fuel under several key operating parameters (i.e., mass ratios, oxygen concentration, and heating rates) were studied. The response surface methodology was used to determine the optimal blending ratio of the three fuels. The results show that the ignition and burnout temperature of coal decrease and the combustion time diminishes with the enrichment of oxygen. The optimal oxygen concentration in the practical application is around 30%. The activation energy and preexponential factor increase with the enlargement of oxygen concentration. Such complex evaluation and optimization approach ensure the stable operation of thermal power plant production.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3