A Partial Differential Equation-Based Image Restoration Method in Environmental Art Design

Author:

Li Chen1ORCID

Affiliation:

1. Office of Informatization Management, Henan University, Kaifeng, Henan 475000, China

Abstract

With the rapid development of networks and the emergence of various devices, images have become the main form of information transmission in real life. Image restoration, as an important branch of image processing, can be applied to real-life situations such as pixel loss in image transmission or network prone to packet loss. However, existing image restoration algorithms have disadvantages such as fuzzy restoration effect and slow speed; to solve such problems, this paper adopts a dual discriminator model based on generative adversarial networks, which effectively improves the restoration accuracy by adding local discriminators to track the information of local missing regions of images. However, the model is not optimistic in generating reasonable semantic information, and for this reason, a partial differential equation-based image restoration model is proposed. A classifier and a feature extraction network are added to the dual discriminator model to provide category, style, and content loss constraints to the generative network, respectively. To address the training instability problem of discriminator design, spectral normalization is introduced to the discriminator design. Extensive experiments are conducted on a data dataset of partial differential equations, and the results show that the partial differential equation-based image restoration model provides significant improvements in image restoration over previous methods and that image restoration techniques are exceptionally important in the application of environmental art design.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3