Oxidative Stress and Gut-Derived Lipopolysaccharides in Neurodegenerative Disease: Role of NOX2

Author:

Loffredo Lorenzo1ORCID,Ettorre Evaristo2,Zicari Anna Maria3ORCID,Inghilleri Maurizio4,Nocella Cristina56,Perri Ludovica1,Spalice Alberto3,Fossati Chiara7,De Lucia Maria Caterina8,Pigozzi Fabio7,Cacciafesta Mauro2,Violi Francesco16,Carnevale Roberto56ORCID,Neurodegenerative Disease study group 123

Affiliation:

1. Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy

2. Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, Division of Gerontology, Sapienza University of Rome, Rome, Italy

3. Department of Pediatrics, Sapienza University of Rome, Italy

4. Department of Human Neuroscience, Sapienza University, Rome, Italy

5. Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy

6. Cardiocentro Mediterranea, Napoli, Italy

7. Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Italy

8. UTNA, IRCCS Neuromed Pozzilli, Isernia, Italy

Abstract

Background. Neurodegenerative diseases (ND) as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis represent a growing cause of disability in the developed countries. The underlying physiopathology is still unclear. Several lines of evidence suggest a role for oxidative stress and NADPH oxidase 2 (NOX2) in the neuropathological pathways that lead to ND. Furthermore, recent studies hypothesized a role for gut microbiota in the neuroinflammation; in particular, lipopolysaccharide (LPS) derived from Gram-negative bacteria in the gut is believed to play a role in causing ND by increase of oxidative stress and inflammation. The aim of this study was to assess NOX2 activity as well as serum 8-iso-prostaglandin F2α (8-iso-PGF2α), serum H2O2, and LPS in patients with ND compared to controls. Methods. One hundred and twenty-eight consecutive subjects, including 64 ND patients and 64 controls (CT) matched for age and gender, were recruited. A cross-sectional study was performed to compare serum activity of soluble NOX2-dp (sNOX2-dp), blood levels of isoprostanes, serum H2O2, and LPS in these two groups. Serum zonulin was used to assess gut permeability. Results. Compared with CT, ND patients had higher values of sNOX2-dp, 8-iso-PGF2α, H2O2, and LPS. Simple linear regression analysis showed that sNOX2-dp was significantly correlated with serum LPS (Rs=0.441; p<0.001), zonulin (Rs=0.411; p<0.001), serum H2O2 (Rs=0.329; p<0.001), and 8-iso-PGF2α (Rs=0.244; p=0.006). LPS significantly correlated with serum zonulin (Rs=0.818; p<0.001) and 8-iso-PGF2α (Rs=0.280; p=0.001). A multiple linear regression analysis was performed to define the independent predictors of sNOX2-dp. LPS (SE, 0.165; standardized coefficient β, 0.459; p<0.001) and 8-iso-PGF2α (SE, 0.018; standardized coefficient β, 0.220; p=0.005) emerged as the only independent predictive variables associated with sNOX2-dp (R2=57%). Conclusion. This study provides the first report attesting that patients with ND have high NOX2 activation that could be potentially implicated in the process of neuroinflammation.

Funder

University of Rome “La Sapienza”

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3