A Study of Information-Based Teaching Strategies for the Saxophone Based on Deep Learning

Author:

Qi Wen-Qiang1,Cao Hai-Bin2ORCID

Affiliation:

1. Academy of Music, Jining University, Jining, Shandong 273100, China

2. Academy of Music, Jiangsu Normal University, Jining, Jiangsu 221116, China

Abstract

Education is one of the core elements in building the career of an individual. It needs proper strategies and techniques to fulfill the modern world’s requirements, such as intelligent learning systems, intelligent management systems, and intelligent computational systems. At present, there is a dearth of systematic debate on how to proceed along the road of machine learning (ML) and education. As a result, this study focuses on the use of artificial intelligence (AI) to promote saxophone informatization teaching strategies, particularly the new strategies brought by deep learning (DL) to saxophone teaching from the perspectives of teaching resources, teaching environment, teaching and learning strategies, teaching management, and teaching evaluation. A matrix decomposition strategy with dynamic weight learning is suggested by keeping the earlier aspects in consideration, which is used to produce a recommendation algorithm that fundamentally incorporates multiple contextual features such as geographic, temporal, and social characteristics, as well as the weight parameter learning process, and essentially constitutes the linear fusion technique’s building approach. All the experiments are carried out on the yelp dataset in order to check if the recommended algorithm is effective or not. The performance of the suggested method is compared to the benchmark algorithms in order to prove that the dynamic weight parameter learning technique is as effective as gradient descent. A comparison of the algorithm that employs one contextual element alone vs the method that uses three contextual factors is also conducted to demonstrate that the linear fusion of several components improves the system’s recommendation performance.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference23 articles.

1. Preface for the Special Issue on AI-Supported Education in Computer Science

2. Teacherbot: interventions in automated teaching

3. Artificial intelligence in music education: a critical review;S. Holland;Readings in Music & Artificial Intelligence Contemporary Music Studies,2000

4. Interactivities in music intelligent tutoring system

5. Computers in music education: amplifying musicality;A. Brown,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3