Experimental Study on Wave Force on Large-Scale Pier Column Foundation of Sea-Crossing Bridge for Preserving the Marine Environment

Author:

Ge Long-zai1ORCID,Liu Ming-yang1ORCID,Liu Hai-yuan1ORCID,Nurjahan 2ORCID

Affiliation:

1. Tianjin Research Institute for Water Transport Engineering, National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin, China

2. Department of Information & Communication Technology, Bangabandhu Sheikh Mujibur Rahman Digital University, Kaliakair, Bangladesh

Abstract

Based on the project sea area where the large-scale sea-crossing bridge is located, the marine environment is facing the threat of severe marine environmental issues such as strong typhoons and big waves. In order to resist the impact of the super wave load, the research focuses on a new structure derived from soft computing techniques in a simulated environment. Since the conventional methods cannot be used for handling such an important problem, soft computing techniques can certainly help to provide simulated solutions. These solutions can be exploited in a real-time environment to test their viability. The overall physical model test of the wave with a scale of 1 : 40 is carried out in this research study by using the proposed methodology. By setting a series of groups such as different wave height, period, water level (pier foundation scouring depth), and wave-current coupling, it is studied that the wave height and period are in positive proportion to the wave force on the pier column structure. However, there is no obvious relationship with the water level change (scouring depth). The buoyancy of the pile cap structure is about 1.27 times greater than that of the pier structure. Compared with the combined wave force of the single wave and wave current, the sensitivity and the relationship have been studied. Using this study and several engineering results completed in the early stage and also verified by the measured data, the results show that the proposed soft computing technique has good accuracy and can provide a reference for the load estimation of large-scale foundation structures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3