Affiliation:
1. School of Computer Engineering, Jimei University, Xiamen 361021, China
2. Digital Fujian Big Data Modeling and Intelligent Computing Institute, Jimei University, Xiamen 361021, China
Abstract
Optimization of machining parameters is an important problem in the modern manufacturing world due to production efficiency and economics. This problem is well known to be complex and is regarded as a strongly nondeterministic polynomial (NP)-hard problem. To reduce the production cost of work-pieces in computer numerical control (CNC) machining, a novel optimization algorithm based on a combination of the bat algorithm and a divide-and-conquer strategy is proposed. First, the basic bat algorithm (BA) is modified with the aim to avoid finding the local optimal solution. In addition, a Gaussian quantum bat algorithm with direction of mean best position is developed. Second, in order to reduce the complexity of the optimization problem, the whole optimization problem is divided into several subproblems by using a divide-and-conquer strategy according to the characteristic of multipass turning operations. Finally, under a large number of machining constraints, the cutting parameters of the two stages of roughing and finishing are simultaneously optimized. Simulation results show that the proposed algorithm can find better combinations of the machining parameters than other algorithms proposed previously to further reduce the production cost. In addition, the outcome of our work presents a novel way to solve the complex optimization problem of machining parameters with a combination of traditional mathematical methods and swarm intelligence algorithms.
Funder
Natural Science Foundation of Fujian Province of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献