Diagnosis of Bronchial and Pulmonary Fungal Infection Using Gradient Weighted Denoising Algorithm-Based CT Images

Author:

Hu Hao1ORCID,Zhou Lihua1ORCID,Zhang Peng1ORCID

Affiliation:

1. Department of Radiology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, Hubei, China

Abstract

Based on computed tomography (CT) with a gradient weighted denoising algorithm, the image denoising technique was applied to diagnose bronchial and pulmonary fungal infection to discuss the features of CT images and the efficiency of the denoising algorithm. Therefore, it could assist clinicians in disease treatment. The clinical data and imaging data of 100 patients with invasive pulmonary fungal infection were collected in the hospital. All of them were rolled into a natural denoising CT group (routine group) and gradient weighted denoising algorithm-based image denoising group (algorithm group). The images from the routine group were processed by the routine natural denoising method, and the images from the algorithm group were denoised with the gradient weighted denoising algorithm. The results showed that the algorithm group had greater denoising efficiency and less denoising time compared with the routine group ( P < 0.05 ). The diagnostic sensitivity, specificity, and accuracy of the denoised images from the algorithm group were higher markedly than the above three indicators of the routine group ( P < 0.05 ). For bronchopulmonary infections, the sensitivity, specificity, and accuracy of the PDE model for CT denoised images were 99.00%, 96.87%, and 98.33%, the positive rate of chest CT examination was 86.2%, which was higher markedly than the rate of ordinary CT examination (70.5%), and the difference was statistically substantial ( P < 0.05 ). Besides, the mean absolute error (MAE), peak signal to noise ratio (PSNR), and mean structural similarity index measure (MSSIM) of the algorithm group were better than those of the unprocessed images and the routine group ( P < 0.05 ). Moreover, the algorithm group had a good visual effect. In conclusion, the gradient weighted denoising algorithm could effectively remove the noise and bar artifacts in CT images and well retain the edge details of CT images, thereby improving the quality of CT images. Therefore, it was suitable for clinical diagnosis and had practical application value.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3