Dysregulation of Pseudogenes/lncRNA-Hsa-miR-1-3p-PAICS Pathway Promotes the Development of NSCLC

Author:

Song Yichen1,Wang Zhiying1,He Lewei1,Sun Feidi1,Zhang Beilei2ORCID,Wang Fu13ORCID

Affiliation:

1. School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China

2. Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, China

3. Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, China

Abstract

Objective. Non-small cell lung cancer (NSCLC) explains about 80 percent of whole lung cancers, and its 5-year survival rate is impoverished, as when people are first diagnosed, 68% of whom are identified at a dangerous stage. The molecular mechanisms of NSCLC are still being explored. Methods. GSE18842 and GSE19804 were exerted to scan for diversely expressed genes (DEGs) in NSCLC, and then we used GEPIA for the validation of DEGs expression. The prognostic values were determined through Kaplan–Meier analysis. Three target prediction databases indicated potential microRNAs (miRNAs), while miRNet predicted hsa-miR-1-3p′s upstream long non-coding RNAs (lncRNAs) and pseudogenes. UALCAN was utilized to identify the co-expressed genes of PAICS, while enrichment analysis on them was managed with Enrichr. Results. We initially found that the gene expression level of cyclin B1 (CCNB1), cyclin-dependent kinases1 (CDK1), and phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) had a notable increase in NSCLC. We predicted 6, 10, and 7 microRNAs to target CCNB1, CDK1, and PAICS, respectively. Among miRNA-mRNA (microRNA-messenger RNA) pairs, we deduced that the hsa-miR-1-PAICS axis was the most potential one to inhibit the occurrence of NSCLC. We also noted that the hsa-miR-1-3p-PAICS axis participated in regulating the process of mitosis with mechanical functions. Moreover, we identified 5 pseudogenes and 33 long non-coding RNAs (lncRNAs) that might inhibit the hsa-miR-1-3p-PAICS axis in NSCLC. Conclusions. The pseudogene/lncRNA-hsa-miR-1-3p-PAICS is very important in NSCLC on the basis of this study, thus providing us with effective treatments and promising biomarkers for the diagnosis of NSCLC.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3