Identification of Halohydrins as Potential Disinfection By-Products in Treated Drinking Water

Author:

Jobst Karl J.1,Taguchi Vince Y.2,Bowen Richard D.3,Trikoupis Moschoula A.4,Terlouw Johan K.1

Affiliation:

1. Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1

2. Laboratory Services Branch, Ministry of the Environment (MOE), 125 Resources Road, Toronto, ON, Canada M9P 3V6

3. School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK

4. Environmental Innovations Branch, Ministry of the Enviroment 135 Street Clair Avenue West, 11th Floor, Toronto, ON, Canada M4V 1P5

Abstract

In 2001, two potential disinfection by-products (DBPs) were tentatively identified as 1-aminoxy-1-chlorobutan-2-ol (DBP-A) and its bromo analogue (DBP-B) (Taguchi 2001). Subsequently it became clear, by consulting an updated version of the NIST database, that their mass spectra are close to those of the halohydrins 4-chloro-2-methylbutan-2-ol and 3-bromo-2-methylbutan-2-ol. To establish the structures of these DBPs, additional mass spectrometric experiments, including Fourier transform ion cyclotron resonance (FTICR), were performed on treated drinking water samples and authentic halohydrin standards. It appears that DBP-A is 3-chloro-2-methylbutan-2-ol and that DBP-B is its bromo analogue. DBP-B has been detected in ozonated waters containing bromide. Our study also shows that these DBPs can be laboratory artefacts, generated by the reaction of residual chlorine in the sample with 2-methyl-2-butene, the stabilizer in the CH2Cl2 used for extraction. This was shown by experiments using CH2Cl2 stabilized with deuterium labelled 2-methyl-2-butene. Quenching any residual chlorine in the drinking water sample with sodium thiosulfate minimizes the formation of these artefacts.

Funder

Ontario Ministry of the Environment

Publisher

Hindawi Limited

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3