Affiliation:
1. Kaili University, Kaili, 556011 Guizhou, China
2. Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, Fujian 352100, China
3. Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde, Fujian 352100, China
Abstract
The extracts of decay-resistant tree species are important research objects for the future development of wood preservatives. To understand the antifungal mechanisms of Coriolus versicolor inhibition with methanol extracts of C. camphora xylem, the protein profiles of C. versicolor were analyzed using 2-DE followed by MALDI-TOF/MS and bioinformatic analyses. The results showed that 41 protein spots were obviously changed among the 366-385 protein spots of C. versicolor treated with methanol extracts of C. camphora xylem. Twenty-one protein spots were upregulated, and 20 protein spots were downregulated. Cellular localization was performed to identify these differential proteins, and biological process and functional analysis found that 9 of these proteins were in the cytoplasm, 6 were intracellular, and 5 were in the mitochondrion. A total of 18.8% were mapped to small-molecule metabolic processes, 12.5% to cellular amino acid metabolic processes, and 10.9% to cellular nitrogen compound metabolic processes. Twenty-five percent of the differential proteins were associated with ion bonding, 15% with oxidoreductase activity, and 15% with ATPase activity and transmembrane transport activity. Downregulated expression of aspartate aminotransferase, ATP synthase alpha chain, DEAD/DEAH-box helicase, and phosphoglycerate kinase showed that the methanol extracts of C. camphora xylem disrupted functional aspects such as nitrogen and carbon metabolism, energy metabolism, hormone signal response, and glucose metabolism, eventually leading to C. versicolor inhibition.
Funder
Open Topic of the Key Laboratory of Green Energy and Environmental Catalysis