Proteomic Analysis Reveals Growth Inhibition of Coriolus versicolor by Methanol Extracts of Cinnamomum camphora Xylem

Author:

Li Quan12ORCID,Li Xiangyang1ORCID,Lin Hui23ORCID

Affiliation:

1. Kaili University, Kaili, 556011 Guizhou, China

2. Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, Fujian 352100, China

3. Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde, Fujian 352100, China

Abstract

The extracts of decay-resistant tree species are important research objects for the future development of wood preservatives. To understand the antifungal mechanisms of Coriolus versicolor inhibition with methanol extracts of C. camphora xylem, the protein profiles of C. versicolor were analyzed using 2-DE followed by MALDI-TOF/MS and bioinformatic analyses. The results showed that 41 protein spots were obviously changed among the 366-385 protein spots of C. versicolor treated with methanol extracts of C. camphora xylem. Twenty-one protein spots were upregulated, and 20 protein spots were downregulated. Cellular localization was performed to identify these differential proteins, and biological process and functional analysis found that 9 of these proteins were in the cytoplasm, 6 were intracellular, and 5 were in the mitochondrion. A total of 18.8% were mapped to small-molecule metabolic processes, 12.5% to cellular amino acid metabolic processes, and 10.9% to cellular nitrogen compound metabolic processes. Twenty-five percent of the differential proteins were associated with ion bonding, 15% with oxidoreductase activity, and 15% with ATPase activity and transmembrane transport activity. Downregulated expression of aspartate aminotransferase, ATP synthase alpha chain, DEAD/DEAH-box helicase, and phosphoglycerate kinase showed that the methanol extracts of C. camphora xylem disrupted functional aspects such as nitrogen and carbon metabolism, energy metabolism, hormone signal response, and glucose metabolism, eventually leading to C. versicolor inhibition.

Funder

Open Topic of the Key Laboratory of Green Energy and Environmental Catalysis

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3