High-Dimensional Hybrid Data Reduction for Effective Bug Triage

Author:

Ge Xin1ORCID,Zheng Shengjie1ORCID,Wang Jiahui1,Li Hui1ORCID

Affiliation:

1. The College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China

Abstract

Owing to the ever-expanding scale of software, solving the problem of bug triage efficiently and reasonably has become one of the most important issues in software project maintenance. However, there are two challenges in bug triage: low quality of bug reports and engagement of developers. Most of the existing bug triage solutions are based on the text information and have no consideration of developer engagement, which leads to the loss of bug triage accuracy. To overcome these two challenges, we propose a high-dimensional hybrid data reduction method that combines feature selection with instance selection to build a small-scale and high-quality dataset of bug reports by removing redundant or noninformative bug reports and words. In addition, we also study the recent engagement of developers, which can effectively distinguish similar bug reports and provide a more suitable list of the recommended developers. Finally, we experiment with four bug repositories: GCC, OpenOffice, Mozilla, and NetBeans. We experimentally verify that our method can effectively improve the efficiency of bug triage.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intuitionistic Fuzzy Set Based Ensemble Approaches for Software Bug Triaging;2023 OITS International Conference on Information Technology (OCIT);2023-12-13

2. A Dual-Population Based Co-evolutionary Algorithm for Capacitated Electric Vehicle Routing Problems;IEEE Transactions on Transportation Electrification;2023

3. On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments;IEEE Access;2023

4. An Improved Software Bug Triaging Approach Based on Topic Modeling and Fuzzy Logic;Proceedings of Third Doctoral Symposium on Computational Intelligence;2022-11-10

5. S-DABT: Schedule and Dependency-aware Bug Triage in open-source bug tracking systems;Information and Software Technology;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3