Asynchronous Realization of Algebraic Integer-Based 2D DCT Using Achronix Speedster SPD60 FPGA

Author:

Rajapaksha Nilanka1,Edirisuriya Amila1,Madanayake Arjuna1,Cintra Renato J.2,Onen Dennis3,Amer Ihab4,Dimitrov Vassil S.3

Affiliation:

1. Electrical and Computer Engineering, Auburn Science and Engineering Center (ASEC) 265, The University of Akron, Akron, OH 44325-3904, USA

2. Signal Processing Group, Department of Statistics, Federal University of Pernambuco, 50740-540 Recife, PE, Brazil

3. Department of Electrical and Computer Engineering, ICT 402, Schulich School of Engineering, University of Calgary, 2500 University Drive NW Calgary, Alberta, Calgary, AB, Canada T2N 1N4

4. Advanced Micro Devices, 1 Commerce Valley Drive East, Markham, ON, Canada L3T 7X6

Abstract

Transformation and quantization play a critical role in video codecs. Recently proposed algebraic-integer-(AI-) based discrete cosine transform (DCT) algorithms are analyzed in the presence of quantization, using the High Efficiency Video Coding (HEVC) standard. AI DCT is implemented and tested on asynchronous quasi delay-insensitive logic, using Achronix SPD60 field programmable gate array (FPGA), which leads to lower complexity, higher speed of operation, and insensitivity to process-voltage-temperature variations. Performance of AI DCT with HEVC is measured in terms of the accuracy of the transform coefficients and the overall rate-distortion (R-D) characteristics, using HM 7.1 reference software. Results indicate a 31% improvement over the integer DCT in the number of transform coefficients having error within 1%. The performance of the 65 nm asynchronous hardware in terms of speed of operation is investigated and compared with the 65 nm synchronous Xilinx FPGA. Considering word lengths of 5 and 6 bits, a speed increase of 230% and 199% is observed, respectively. These results indicate that AI DCT can be potentially utilized in HEVC for applications demanding high accuracy as well as high throughput. However, novel quantization schemes are required to allow the accuracy improvements obtained.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3