Alteration of 11β-Hydroxysteroid Dehydrogenase Type 1 and Glucocorticoid Receptor by Ethanol in Rat Liver and Mouse Hepatoma Cells

Author:

Meng Zhaojie1,Bao Xueying2,Zhang Ming1,Wei Shengnan1,Chang Wenguang1,Li Jing1,Chen Li1,Nyomba B. L. Grégoire3

Affiliation:

1. Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China

2. The 208th Hospital of the Chinese People’s Liberation Amry, Changchun, Jilin 130062, China

3. Department of Internal Medicine, University of Manitoba, Winnipeg, MB, R3E3P4, Canada

Abstract

Alcohol is a potential risk factor of type 2 diabetes, but its underlying mechanism is unclear. To explore this issue, Wistar rats and mouse hepatoma cells (Hepa 1–6) were exposed to ethanol, 8 g·kg−1·d−1for 3 months and 100 mM for 48 h, respectively. Glucose and insulin tolerance testsin vivowere performed, and protein levels of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and glucocorticoid receptor (GR) in liver and Hepa 1–6 cells were measured. Alterations of key enzymes of gluconeogenesis phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase), as well as glycogen synthase kinase 3a (GSK3α), were also examined. The results revealed that glucose levels were increased, and insulin sensitivity was impaired accompanied with liver injury in rats exposed to ethanol compared with controls. The 11β-HSD1, GR, PEPCK, G6Pase, and GSK3αproteins were increased in the liver of rats treated with ethanol compared with controls. Ethanol-exposed Hepa 1–6 cells also showed higher expression of 11β-HSD1, GR, PEPCK, G6Pase, and GSK3αproteins than control cells. After treatment of Hepa 1–6 cells exposed to ethanol with the GR inhibitor RU486, the expression of 11β-HSD1 and GR was significantly decreased. At the same time the increases in PEPCK, G6Pase, and GSK3αlevels induced by ethanol in Hepa 1–6 cells were also attenuated by RU486. The results indicate that ethanol causes glucose intolerance by increasing hepatic expression of 11β-HSD1 and GR, which leads to increased expression of gluconeogenic and glycogenolytic enzymes.

Funder

Jilin Provincial Science & Technology Department

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3