Affiliation:
1. Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
2. The 208th Hospital of the Chinese People’s Liberation Amry, Changchun, Jilin 130062, China
3. Department of Internal Medicine, University of Manitoba, Winnipeg, MB, R3E3P4, Canada
Abstract
Alcohol is a potential risk factor of type 2 diabetes, but its underlying mechanism is unclear. To explore this issue, Wistar rats and mouse hepatoma cells (Hepa 1–6) were exposed to ethanol, 8 g·kg−1·d−1for 3 months and 100 mM for 48 h, respectively. Glucose and insulin tolerance testsin vivowere performed, and protein levels of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and glucocorticoid receptor (GR) in liver and Hepa 1–6 cells were measured. Alterations of key enzymes of gluconeogenesis phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase), as well as glycogen synthase kinase 3a (GSK3α), were also examined. The results revealed that glucose levels were increased, and insulin sensitivity was impaired accompanied with liver injury in rats exposed to ethanol compared with controls. The 11β-HSD1, GR, PEPCK, G6Pase, and GSK3αproteins were increased in the liver of rats treated with ethanol compared with controls. Ethanol-exposed Hepa 1–6 cells also showed higher expression of 11β-HSD1, GR, PEPCK, G6Pase, and GSK3αproteins than control cells. After treatment of Hepa 1–6 cells exposed to ethanol with the GR inhibitor RU486, the expression of 11β-HSD1 and GR was significantly decreased. At the same time the increases in PEPCK, G6Pase, and GSK3αlevels induced by ethanol in Hepa 1–6 cells were also attenuated by RU486. The results indicate that ethanol causes glucose intolerance by increasing hepatic expression of 11β-HSD1 and GR, which leads to increased expression of gluconeogenic and glycogenolytic enzymes.
Funder
Jilin Provincial Science & Technology Department
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献