Action Recognition Using Action Sequences Optimization and Two-Stream 3D Dilated Neural Network

Author:

Xiong Xin123ORCID,Min Weidong234ORCID,Han Qing4ORCID,Wang Qi5ORCID,Zha Cheng4ORCID

Affiliation:

1. Information Department, First Affiliated Hospital of Nanchang University, Nanchang 330006, China

2. Institute of Metaverse, Nanchang University, Nanchang 330031, China

3. Jiangxi Key Laboratory of Smart City, Nanchang 330047, China

4. School of Mathematics and Computer Science, Nanchang University, Nanchang 330031, China

5. School of Software, Nanchang University, Nanchang 330047, China

Abstract

Effective extraction and representation of action information are critical in action recognition. The majority of existing methods fail to recognize actions accurately because of interference of background changes when the proportion of high-activity action areas is not reinforced and by using RGB flow alone or combined with optical flow. A novel recognition method using action sequences optimization and two-stream fusion network with different modalities is proposed to solve these problems. The method is based on shot segmentation and dynamic weighted sampling, and it reconstructs the video by reinforcing the proportion of high-activity action areas, eliminating redundant intervals, and extracting long-range temporal information. A two-stream 3D dilated neural network that integrates features of RGB and human skeleton information is also proposed. The human skeleton information strengthens the deep representation of humans for robust processing, alleviating the interference of background changes, and the dilated CNN enlarges the receptive field of feature extraction. Compared with existing approaches, the proposed method achieves superior or comparable classification accuracies on benchmark datasets UCF101 and HMDB51.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3