A Finite Element Formulation for Bending-Torsion Coupled Vibration Analysis of Delaminated Beams under Combined Axial Load and End Moment

Author:

Kashani Mir Tahmaseb1,Hashemi Seyed M.1ORCID

Affiliation:

1. Department of Aerospace Eng., Ryerson University, Toronto, ON, M5B-2K3, Canada

Abstract

Free vibration analysis of beams with single delamination undergoing bending-torsion coupling is made, using traditional finite element technique. The Galerkin weighted residual method is applied to convert the coupled differential equations of motion into to a discrete problem, where, in addition to the conventional mass and stiffness matrices, a delamination stiffness matrix, representing the extra stiffening effects at the delamination tips, is introduced. The linear eigenvalue problem resulting from the discretization along the length of the beam is solved to determine the frequencies and modes of free vibration. Both “free mode” and “constrained mode” delamination models are considered in formulation, and it is shown that the continuity (both kinematic and force) conditions at the beam span-wise locations corresponding to the extremities of the delaminated region, in particular, play a great role in “free mode” model formulation. Current trends in the literature are examined, and insight into different types of modeling techniques and constraint types are introduced. In addition, the data previously available in the literature and those obtained from a finite element-based commercial software are utilized to validate the presented modeling scheme and to verify the correctness of natural frequencies of the systems analyzed here. The paper ends with general discussions and conclusions on the presented theories and modeling approaches.

Funder

Ryerson University

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3