Foreign Object Detection in Railway Images Based on an Efficient Two-Stage Convolutional Neural Network

Author:

Chen Weixun1ORCID,Meng Siming1ORCID,Jiang Yuelong1

Affiliation:

1. Information Engineering Institute, Guangzhou Railway Polytechnic, Guangzhou 510430, China

Abstract

Foreign object intrusion is one of the main causes of train accidents that threaten human life and public property. Thus, the real-time detection of foreign objects intruding on the railway is important to prevent the train from colliding with foreign objects. Currently, the detection of railway foreign objects is mainly performed manually, which is prone to negligence and inefficient. In this study, an efficient two-stage framework is proposed for foreign object detection in railway images. In the first stage, a lightweight railway image classification network is established to classify any input railway images into one of two classes: normal or intruded. To enable real-time and accurate classification, we propose an improved inverted residual unit by introducing two improvements to the original inverted residual unit. First, the selective kernel convolution is used to dynamically select kernel size and learn multiscale features from railway images. Second, we employ a lightweight attention mechanism, called the convolutional block attention module, to exploit both spatial and channel-wise relationships between feature maps. In the second stage of our framework, the intruded image is fed to the foreign object detection network to further detect the location and class of the objects in the image. Experimental results confirm that the performance of our classification network is comparable to the widely used baselines, and it obtains outperforming efficiency. Moreover, the performances of the second-stage object detection are satisfying.

Funder

Innovation Team Project of Guangdong Province General University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3