Feedback Artificial Shuffled Shepherd Optimization-Based Deep Maxout Network for Human Emotion Recognition Using EEG Signals

Author:

Bhanumathi K. S.1ORCID,Jayadevappa D.1ORCID,Tunga Satish2ORCID

Affiliation:

1. Department of Electronics and Instrumentation Engineering, JSS Academy of Technical Education, Bengaluru, VTU, India

2. Department of Electronics & Telecommunication Engineering, Ramaiah Institute of Technology, Bengaluru, India

Abstract

Emotion recognition is very important for the humans in order to enhance the self-awareness and react correctly to the actions around them. Based on the complication and series of emotions, EEG-enabled emotion recognition is still a difficult issue. Hence, an effective human recognition approach is designed using the proposed feedback artificial shuffled shepherd optimization- (FASSO-) based deep maxout network (DMN) for recognizing emotions using EEG signals. The proposed technique incorporates feedback artificial tree (FAT) algorithm and shuffled shepherd optimization algorithm (SSOA). Here, median filter is used for preprocessing to remove the noise present in the EEG signals. The features, like DWT, spectral flatness, logarithmic band power, fluctuation index, spectral decrease, spectral roll-off, and relative energy, are extracted to perform further processing. Based on the data augmented results, emotion recognition can be accomplished using the DMN, where the training process of the DMN is performed using the proposed FASSO method. Furthermore, the experimental results and performance analysis of the proposed algorithm provide efficient performance with respect to accuracy, specificity, and sensitivity with the maximal values of 0.889, 0.89, and 0.886, respectively.

Publisher

Hindawi Limited

Subject

Health Information Management,Computer Networks and Communications,Health Informatics,Medicine (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3