Affiliation:
1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
Abstract
The distribution of the stress field on the rack face has significant impacts on the performance and service life of the rock cutting tool. A dynamic simulation model of the stress on the rock cutting tool is established by finite element code Abaqus, and the distribution of local stress on the rack face and its impact factors are studied. It is concluded that the local stress on the rack face of the rock cutting tool shows obvious periodical fluctuation characteristics, and the fluctuation cycle of each point on the tool remains unchanged under the same cutting conditions. The stress fluctuation cycle period decreases with the increase of cutting speed inversely. The cutting depth and the back angle of the cutting tool have no obvious impact on the stress fluctuation period. However, the cutting depth and the back angle have obvious impacts on the average stress distributions of each point on the rack face of the tool. That is, the increase of back angle and cutting depth could cause the maximum stress point of the rack face to move upward to the tool tip.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献