Affiliation:
1. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
Abstract
In this paper, nonlinear dynamics and chaos of electrostatically actuated MEMS resonators under two-frequency parametric and external excitations are investigated analytically and numerically. A nonlinear mass-spring-damping model is used to accounting for squeeze film damping and the parallel plate electrostatic force. The micro-structure is excited by a dc bias electrostatic force and a harmonic force with a frequency tuned closely to their fundamental natural frequencies (combination oscillation). The quality factor is calculated for the microcantilever beam of the resonator considering squeeze film damping. The effect of nonlinear squeeze film damping on the frequency response, quality factor, resonant frequency and nonlinear dynamic characteristics of the dynamic system are provided with numerical simulations using the bifurcation diagram, Poicare maps, largest Lyapunov exponent and phase portrait. The results show that the dynamic system goes through a complex nonlinear vibration as the system parameters change. It is indicated that the effect of nonlinear squeeze film damping should be considered due to its decreasing the quality factor and changing the nonlinear phenomena of the MEMS resonators.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献