Deep-Stacking Network Approach by Multisource Data Mining for Hazardous Risk Identification in IoT-Based Intelligent Food Management Systems

Author:

Kong Jianlei12ORCID,Yang Chengcai1,Wang Jianli1ORCID,Wang Xiaoyi1ORCID,Zuo Min12ORCID,Jin Xuebo1ORCID,Lin Sen3

Affiliation:

1. School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

2. National Engineering Laboratory for Agri-Product Quality Traceability, Beijing 100048, China

3. Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

Food quality and safety issues occurred frequently in recent years, which have attracted more and more attention of social and international organizations. Considering the increased quality risk in the food supply chain, many researchers have applied various information technologies to develop real-time risk identification and traceability systems (RITSs) for preferable food safety guarantee. This paper presents an innovative approach by utilizing the deep-stacking network method for hazardous risk identification, which relies on massive multisource data monitored by the Internet of Things timely in the whole food supply chain. The aim of the proposed method is to help managers and operators in food enterprises to find accurate risk levels of food security in advance and to provide regulatory authorities and consumers with potential rules for better decision-making, thereby maintaining the safety and sustainability of food product supply. The verification experiments show that the proposed method has the best performance in terms of prediction accuracy up to 97.62%, meanwhile achieves the appropriate model parameters only up to 211.26 megabytes. Moreover, the case analysis is implemented to illustrate the outperforming performance of the proposed method in risk level identification. It can effectively enhance the RITS ability for assuring food supply chain security and attaining multiple cooperation between regulators, enterprises, and consumers.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3