The Design of University Coordination Utility Management and Online Repair Platform Based on Multivariate Statistical Analysis with Random Matrix

Author:

Wang Xu1ORCID

Affiliation:

1. Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421005, China

Abstract

In this paper, the random matrix of multivariate statistical analysis is used to conduct in-depth research and analysis of the university coordination utility management and online repair platform. Considering that the chunking of variables based on mechanistic knowledge is not easy to achieve, firstly, the maximum correlation and minimum redundancy algorithm is used to portray the correlation more accurately between process variables and remove the redundancy between variables to provide the optimal variable input for the base model. The multivariate mean control chart was used to calculate the offset between the data of each test group of the contact network and the overall mean and standard values of the contact network parameters under different correlations among the contact network parameters. Based on the daily work research and process document sampling of the university coordination utilities management department, the requirement analysis and design of the target system were completed, and a university coordination utility management system based on BS architecture was developed. Student information is lost, data statistics are wrong, etc., so that the business work of other departments of the school cannot be carried out smoothly. The whole platform can be divided into several submodules according to the functions: super administrator module, administrator module, staff module, and user module, and the detailed design scheme of each module is described in detail. At the same time, the logistic regression model is trained using the collected data sets, and the training scheme of the model is designed. The mathematical model of logistic regression and the related algorithm are used to decide whether to purchase maintenance equipment at this stage and the quantity of purchase. Finally, a new monitoring index is proposed to monitor the process status. MNPE-GMM not only maintains most of the local structural information of the window dataset in the feature subspace but also reduces the computational complexity of GMM in the fault detection process. The MNPE-GMM method can effectively improve the fault detection rate of multimodal intermittent processes by introducing new statistics.

Funder

Hunan Polytechnic of Environment and Biology

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3