An Shen Ding Zhi Ling Ameliorates the Symptoms of Attention Deficit Hyperactivity Disorder via Modulating Brain-Derived Neurotrophic Factor-Related Signaling Pathways

Author:

Yaqun Li123,Haixia Yuan14,Yuchen Song1,Mingxin Zhu4,Manqi Lu5,Yunlong Tian2,Aizhen Wang2ORCID,Xinmin Han14ORCID

Affiliation:

1. First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China

2. The Affiliate Taizhou Hospital of Nanjing University of Chinese Medicine, Taizhou, China

3. Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China

4. Jiangsu Province Hospital of Chinese Medicine, Nanjing, China

5. College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China

Abstract

Attention deficit hyperactivity disorder (ADHD) is a common childhood neurodevelopmental disorder. It may impact the cognitive and social functions throughout childhood and determine adult outcomes. Dopamine (DA) deficiency theory is the pathogenesis of ADHD that is recognized by most international literature. Existing studies have shown that DA deficiency is caused by the abnormal function of the DA transporter and an imbalance in the DA receptor functionality. Recent clinical and experimental studies have found that the brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling pathway acts a pivotal part in DA vesicle circulation and ADHD pathogenesis. An Shen Ding Zhi Ling (ASDZL) is a traditional Chinese medicine (TCM) prescription, which was widely prescribed to treat ADHD in Jiangsu, China, but its therapeutic mechanism is unclear. Therefore, we constructed a spontaneously hypertensive rat (SHR) model to explain its mechanism. SHRs were randomly assigned to four groups: SHR model group (vehicle), methylphenidate hydrochloride group (MPH), ASDZL group, and 7,8-dihydroxyflavone group (7,8-DHF). At the same time, the above groups were given continuous medication for four weeks. The results show that ASDZL, MPH, and 7,8-DHF group could significantly improve the spatial memory of SHRs in the Morris water maze tests. ASDZL increased the levels of BDNF, TrkB, p75 neurotrophin receptor (p75), C-Jun N-terminal kinases 1 (JNK1), and nuclear factor kappa B (NF-κB) in the prefrontal cortex (PFC) and hippocampus synaptosome of SHRs. The results of this study suggest that ASDZL can relieve the symptoms of ADHD in SHRs by regulating the balance between the BDNF/TrkB signaling pathway (promoting vesicle circulation) and the BDNF/P75/JNK1/NF-κB signaling pathway (inhibiting vesicle circulation) within the PFC and hippocampus synaptosome to increase the DA concentration in the synaptic cleft. The BDNF/TrkB signal pathway within the PFC and hippocampus synaptosome was activated by 7,8-DHF to increase DA concentration in the synaptic cleft. Whether 7,8-DHF can activate or inhibit the BDNF/P75 signaling pathway remains unclear.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3