Development of a Monitoring and Management System for Nonheritage Tourist Attractions Based on Mobile GIS and Multisensor Technology

Author:

Zu Enhou1,Shu MingHung23ORCID,Huang JuiChan4ORCID,Wu TzuJung5,Hsu ChihWei2ORCID,Chang YuanChieh5

Affiliation:

1. School of Management, Henan University of Science & Technology, Kaiyuan Avenue, Luoyang, Henan 471023, China

2. Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung City 807618, Taiwan

3. Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan

4. Yango University, Fuzhou, Fujian 350015, China

5. Institute of Technology Management, National Tsing Hua University, Hsinchu, Taiwan

Abstract

With the rapid development of the tourism industry, how to monitor scenic spots and tourists in real time has become an issue. This paper mainly describes the development of a monitoring and management system for scenic spots of intangible cultural heritage based on Mobile GIS and multisensor technology. The monitoring system adopts the idea of structured programming, which reduces the coupling degree of various components and promotes the expansion of system functions. The shortest path module uses the scenic spot management subsystem on the PC. The scenic spot manager enters the distance between adjacent scenic spots that can be directly reached into the system database and then uses the shortest path algorithm, Dijkstra algorithm, to calculate. Asynchronous Socket programming mechanisms are used to implement communication capabilities, the XML markup language is selected as the system’s data exchange protocol, and the DHT11 digital temperature and humidity sensor is used to obtain humidity information around ancient buildings. A Mobile GIS reader of an ancient building in a scenic spot sends a request to connect to a server. The listener is the communication interface between the server software and the reader. It is responsible for parsing the transmitted data and storing it in the database. The CC2430 chip is used to wear on tourists. When tourist nodes and guide nodes enter the scenic spot, they join the network to query the density of the entire scenic spot and upload real-time information. In terminal query, the average response time of real-time location query is 2S. The average initial response time for historical location queries is about 3S. The results show that the visualization services provided by software development can intuitively and accurately display the flow and density of scenic spots, providing a scientific reference for carrying capacity and flow management of scenic spots.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3