Finite Element Analysis of a Reinforced Concrete Dapped-End Beam under the Effects of Impact Velocity and Dapped-End Beam Cross-Section Geometry

Author:

Melesse Getinet1ORCID,Behailu Tekalign1,Kaske Kassa Hibretu2ORCID

Affiliation:

1. School of Civil Engineering, Institute of Technology, Arbaminch University, Arbaminch, Ethiopia

2. Department of Civil Engineering, Debre Tabor University, South Gondar, Gondar, Ethiopia

Abstract

This study focuses on the behavior of a three-dimensional reinforced concrete dapped-end beam subjected to the effects of impact velocity and dapped-end beam cross-section geometry by numerical simulation using ABAQUS (V6.14) software under a constant impact load. The finite element software ABAQUS is utilized to simulate and analyze the drop impact to obtain accurate and detailed results. A sudden drop impact is a short-duration dynamic load that could involve very large deformations and damage to the reinforced concrete dapped-end beam. The finite element analysis has been completed by creating the geometry, material properties, boundary conditions, and loading conditions. In this study, a total of seven analyzes were conducted with different parameters, i.e., the effect of the velocity of the impact load and the geometry of the dapped-end beam cross-section. From the finite element analysis results, it can be concluded that as the impact velocity increases, the impact force and mid-span displacement of the reinforced concrete dapped-end beam also increases. The higher the impact velocity, the greater the amount of damage caused throughout the RC beam. When the recess length increases from 200 mm to 500 mm, the deflection increases by 13%. The depth of the nib has a great influence on the impact response and deflection of the reinforced concrete dapped end beam. The ABAQUS output shows that increasing the dapped end beam nib depth from 260 mm to 450 mm reduces the impact load by 50%, from 22733.6 N to 13640.16 N. On the other hand, the nib depth increased from 260 mm to 450 mm, and the maximum deflection was reduced from 1.10245 mm to 0.6892 mm, i.e., a 46.1% reduction.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3