MicroRNA-29a-3p Regulates SH-SY5Y Cell Proliferation and Neurite Growth through Interaction with PTEN-PI3K/AKT/mTOR Signaling Pathway

Author:

Gao Wansheng1ORCID,Yang Han2,Huang Wenbo1,Yang Yanfeng1,Li Dongsheng1,Wei Liang1

Affiliation:

1. Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China

2. Department of Urology, The Central Hospital of Xinyang City, Xinyang City, Henan Province, China

Abstract

The effects of microRNA-29a-3p in the proliferation process of nerve cells are unclear. The purpose of this study is to delve into the regulatory role of microRNA-29a-3p, via interaction with phosphatase and tension homolog (PTEN), in the SH-SY5Y cell proliferation process. Different expressions of microRNA-29a-3p in the SH-SY5Y cells were constructed by transfected miRNA-29a-3p mimic and inhibitor. The effects of cell transfection and the mRNA expressions of PTEN, Akt, and mTOR were detected by qPCR. The expressions of PTEN, Akt, and mTOR protein and the phosphorylation levels of Akt and mTOR were examined using Western blotting. Nerve cell proliferation activity and neurite length of each group were measured and examined by the use of 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2Htetrazolium bromide (MTT), and morphological examination. We observed that the levels of PTEN mRNA and protein were distinctly decreased in the microRNA-29a-3p mimic group, but the expressions of the phosphorylated Akt and mTOR mRNA and protein were distinctly upregulated. In the transfected miRNA-29a-3p inhibitor SH-SY5Y cells, the expressions of miRNA-29a-3p were significantly suppressed; however, the expressions of PTEN gene and protein were significantly enhanced. The expressions of phosphorylated Akt and mTOR in the downregulated microRNA-29a-3p group distinctly were suppressed. The SH-SY5Y cell proliferation activity and neurite length in the upregulated microRNA-29a-3p group increased significantly. Our findings revealed that microRNA-29a-3p could enhance the proliferation activity of SH-SY5Y cells and promote neurite growth by inhibiting the expression of PTEN and regulating PI3K/Akt/mTOR signaling pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3