Antimicrobial and Mechanical Properties of Orthodontic Acrylic Resin Containing Zinc Oxide and Titanium Dioxide Nanoparticles Supported on 4A Zeolite

Author:

Esmaeilzadeh Mahdiyeh1ORCID,Divband Baharak1ORCID,Ranjkesh Bahram2ORCID,Pournaghi Azar Fatemeh3ORCID,Yeganeh Sefidan Fatemeh4ORCID,Kachoei Mojgan5ORCID,Karimzadeh Behnaz6ORCID

Affiliation:

1. Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2. Department of Dentistry and Oral Health, Section for Prosthetic Dentistry, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Aarhus, Denmark

3. Department of Operative Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

4. Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

5. Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

6. Student Research Committee, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Polymethyl methacrylate (PMMA) is widely used to manufacture removable orthodontic appliances. However, since the porous structure, cold-curing acrylic resins are susceptible to bacterial adhesion and colonization. The aim of this study was to investigate the antibacterial and mechanical properties of a cold-curing PMMA resin containing ZnO and TiO2 nanoparticles supported on the 4A zeolite. ZnO and TiO2 nanoparticles supported on the 4A zeolite were synthesized. Nanoparticles were added in three compositions as ZnO/4A, TiO2/4A, and ZnO/TiO2/4A at 2wt% and 4wt% concentrations to cold-curing acrylic resin powder (SR Triplex® Cold Ivoclar Vivadent AG, FL-9494 Schaan/Liechtenstein). X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), and dynamic light scattering (DLS) were performed to investigate the nanocomposite characteristics. A direct test method was used to assess the antibacterial properties against Streptococcus mutans, Klebsiella pneumoniae, and Escherichia coli. The surface roughness of acrylic samples was measured with a profilometer. Flexural strength was evaluated by a three-point bending test, and one-way ANOVA and Tukey’s post hoc tests were used for statistical evaluation of the data. A p value of less than 0.05 was considered statistically significant. XRD confirmed the accurate crystalline structure of synthesized nanoparticles; FE-SEM images showed nanoparticle dispersion within polymerized acryl. The addition of 2 and 4 wt% of ZnO/4A, TiO2/4A, and ZnO/TiO2/4A caused colony reduction in all types of tested microorganisms more than 99% and 100%, respectively. The mean flexural strengths of acrylic specimens containing 2wt% and 4wt% of synthesized nanoparticles were significantly lower than those of the resin without nanoparticles. Fabricated samples showed favorable antibacterial properties but decreased flexural strength.

Funder

Tabriz University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3