Automated Detection of Rehabilitation Exercise by Stroke Patients Using 3-Layer CNN-LSTM Model

Author:

Rahman Zia Ur1ORCID,Ullah Syed Irfan1,Salam Abdus1ORCID,Rahman Taj2ORCID,Khan Inayat3ORCID,Niazi Badam4ORCID

Affiliation:

1. Department of Computing and Technology Abasyn University, Peshawar 25000, Pakistan

2. Qurtuba University of Science and Technology Peshawar, Peshawar 25000, Pakistan

3. Department of Computer Science, University of Buner, Buner 19290, Pakistan

4. Department of Computer Science, University of Nangarhar, Jalalabad 2600, Afghanistan

Abstract

According to statistics, stroke is the second or third leading cause of death and adult disability. Stroke causes losing control of the motor function, paralysis of body parts, and severe back pain for which a physiotherapist employs many therapies to restore the mobility needs of everyday life. This research article presents an automated approach to detect different therapy exercises performed by stroke patients during rehabilitation. The detection of rehabilitation exercise is a complex area of human activity recognition (HAR). Due to numerous achievements and increasing popularity of deep learning (DL) techniques, in this research article a DL model that combines convolutional neural network (CNN) and long short-term memory (LSTM) is proposed and is named as 3-Layer CNN-LSTM model. The dataset is collected through RGB (red, green, and blue) camera under the supervision of a physiotherapist, which is resized in the preprocessing stage. The 3-layer CNN-LSTM model takes preprocessed data at the convolutional layer. The convolutional layer extracts useful features from input data. The extracted features are then processed by adjusting weights through fully connected (FC) layers. The FC layers are followed by the LSTM layer. The LSTM layer further processes this data to learn its spatial and temporal dynamics. For comparison, we trained CNN model over the prescribed dataset and achieved 89.9% accuracy. The conducted experimental examination shows that the 3-Layer CNN-LSTM outperforms CNN and KNN algorithm and achieved 91.3% accuracy.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3