Affiliation:
1. Government Data Solution Division, Department of Data Solution, Digital Government Development Agency (Public Organization), Bangkok, Thailand
2. Department of Computer Engineering and Electronics, School of Engineering and Technology, Walailak University, Nakhon Si Thammarat, Thailand
Abstract
Predicting electricity consumption is notably essential to provide a better management decision and company strategy. This study presents a hybrid machine learning model by integrating dimensionality reduction and feature selection algorithms with a backpropagation neural network (BPNN) to predict electricity consumption in Thailand. The predictive models are developed and tested using an actual dataset with related predictor variables from public sources. An open geospatial data gathered from a real service as well as geographical, climatic, industrial, household information are used to train, evaluate, and validate these models. Machine learning methods such as principal component analysis (PCA), stepwise regression (SWR), and random forest (RF) are used to determine the significant predictor variables. The predictive models are constructed using the BPNN with all available variables as baseline for comparison and selected variables from dimensionality reduction and feature selection methods. Along with creating a predictive model, the most related predictors of energy consumption are also selected. From the comparison, the hybrid model of RF with BPNN consistently outperforms the other models. Thus, the proposed hybrid machine learning model presented from this study can predict electricity consumption for planning and managing the energy demand.
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献