Impact of Placement of Aminopropyl Triethoxy Silane and Tetraethoxy Silicate on SSBR Chains: Analysis of Rolling Resistance, Wet Grip, and Abrasion Resistance

Author:

Hassanabadi Majid1,Najafi Mohammad1ORCID,Nikazar Sohrab1,Garakani Sadaf Saeedi1,Motlagh Ghodratollah Hashemi1

Affiliation:

1. Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran

Abstract

Solution styrene-butadiene rubber (SBR) and silica filler have attracted a significant attention because of their superior properties in cured rubber mixtures used in automobile tire industry. One of the challenges ahead of using these materials is the hard dispersion of silica with its polar surface in SBR nonpolar rubber. In the present study, the synthesis of styrene-butadiene rubber by solution polymerization method with polymer chain modification using copolymer functionalization was performed. For this purpose, two materials, namely, aminopropyl triethoxy silane (APTES) and tetraethoxy silicate (TEOS), were employed to improve the silica dispersion in the mixture. The results of postsynthesis structural tests show the successful placement of functional groups on the polymer chain. The results of mechanical, dynamic, and imaging analyses of the cured mixtures showed an improvement in the APTES-containing samples rolling resistance, wet surface grip, and abrasion resistance by 39%, 18%, and 17%, respectively, due to having stronger physical and chemical bonds with silica and also the usage of end agents in the polymer chain. The samples containing TEOS had also better results than the conventional SBR rubber. In addition, a sample containing emulsion styrene-butadiene rubber was prepared to compare its properties with those of the solution SBR. Another SBR sample containing silane coupling agent was also prepared to investigate its performance compared to that of the agents placed on the polymer chain. The abrasion resistance, rolling resistance, and wet grip of the coupling agent containing sample showed 2%, 10%, and 30% improvement, respectively, which were very close to those of the sample containing the TEOS agent. In this work, various techniques including, rheometry, wear, rolling, hardness, bound rubber content, dynamic mechanical thermal analysis (DMTA), and field emission scanning electron microscopy (FE-SEM) were employed to analyze the synthesized rubber.

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3