Abstractive Arabic Text Summarization Based on Deep Learning

Author:

Wazery Y.M.1,Saleh Marwa E.1ORCID,Alharbi Abdullah2,Ali Abdelmgeid A.1

Affiliation:

1. Faculty of Computers and Information, Minia University, Minia, Egypt

2. Department of Information Technology, College of Computers and Information Technology, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia

Abstract

Text summarization (TS) is considered one of the most difficult tasks in natural language processing (NLP). It is one of the most important challenges that stand against the modern computer system’s capabilities with all its new improvement. Many papers and research studies address this task in literature but are being carried out in extractive summarization, and few of them are being carried out in abstractive summarization, especially in the Arabic language due to its complexity. In this paper, an abstractive Arabic text summarization system is proposed, based on a sequence-to-sequence model. This model works through two components, encoder and decoder. Our aim is to develop the sequence-to-sequence model using several deep artificial neural networks to investigate which of them achieves the best performance. Different layers of Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM), and Bidirectional Long Short-Term Memory (BiLSTM) have been used to develop the encoder and the decoder. In addition, the global attention mechanism has been used because it provides better results than the local attention mechanism. Furthermore, AraBERT preprocess has been applied in the data preprocessing stage that helps the model to understand the Arabic words and achieves state-of-the-art results. Moreover, a comparison between the skip-gram and the continuous bag of words (CBOW) word2Vec word embedding models has been made. We have built these models using the Keras library and run-on Google Colab Jupiter notebook to run seamlessly. Finally, the proposed system is evaluated through ROUGE-1, ROUGE-2, ROUGE-L, and BLEU evaluation metrics. The experimental results show that three layers of BiLSTM hidden states at the encoder achieve the best performance. In addition, our proposed system outperforms the other latest research studies. Also, the results show that abstractive summarization models that use the skip-gram word2Vec model outperform the models that use the CBOW word2Vec model.

Funder

Taif University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference30 articles.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3