Detection of Deficiency of Nutrients in Grape Leaves Using Deep Network

Author:

Ali Asad1ORCID,Ali Sikandar2ORCID,Husnain Mujtaba1ORCID,Saad Missen Malik Muhammad1ORCID,Samad Ali1ORCID,Khan Mukhtaj2ORCID

Affiliation:

1. Faculty of Computing, The Islamia University of Bahawalpur, 63100, Pakistan

2. Department of Information Technology, The University of Haripur, Haripur 22620, Khyber Pakhtunkhwa, Pakistan

Abstract

It is quite natural that the crops may be affected from a number of diseases due to many factors namely, change in climate, variations in environmental changings, deficiency of urea etc. Among these factors, the deficiency of the natural nutrients is one of the common reasons that may effect on the overall production of a certain crop. The grape leaves are one of crops that are affected by the deficiency of nutrients like Potassium, Magnesium, Nitrogen and Phosphorus. Furthermore, the effects of these nutrients may have similar disorders on the grape leaves like tilting off the leaf from edges, change in color, rusting off from the root etc. and it is hard to find the identify the nutrient which is likely to be deficient in the grape leaf. In order to ensure the good quality and high production, it is necessary to design an automated system that helps in classifying the affected grape leaf in any of the four classes namely, Potassium-deficient (K-deficient), Phosphorus-deficient (P-deficient), Nitrogen-deficient (N-deficient) or Magnesium-deficient (Mg-deficient). To achieve this target, we performed a series of experiment in which we first created a dataset of grape leaves affected from the deficiency of nutrients, from the crop fields in a controlled environment. The dataset is also augmented since the data instances were not in appropriate amount to achieve the negotiable results. After preprocessing, the Convolution Neural Network (CNN) classifier is used to achieve the average individual accuracies of 77.97%, 77.74%, 81.81% and, 78.09% for K-, Mg-, P- and N-deficient grape leaves, respectively using conventional training testing ratio and while for the same sequence individual accuracies achieved are 95.95%, 92.70%, 90.91% and , 94.76% using n-fold cross validation approaches on the original dataset. These accuracies were improved when these approaches are applied on the augmented dataset. The results were also compared with recent studies concluding that our proposed approach outperformed the previous studies. Our experimental results are equally applicable and beneficial when implemented on mobile devices for getting real-time results.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Lightweight CNN-SVM Explainable AI Approach for Classification and Visualization of Grape Leaf Disease;2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE);2024-04-25

2. Deep Learning Techniques to Detect Nutrient Deficiency in Rice Plants;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

3. Using Convolutional Neural Networks for Nutrient Deficiency Detection and Classification in Strawberry Plants;SoutheastCon 2024;2024-03-15

4. Identification of Nutrient Deficiency Based on Leaf Image Data Using Machine Learning;2024 International Conference on Emerging Smart Computing and Informatics (ESCI);2024-03-05

5. Digital Biomarker for Muscle Function Assessment Using Surface Electromyography With Electrical Stimulation and a Non-Invasive Wearable Device;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3