Parameter Optimization of Educational Network Ecosystem Based on BERT Deep Learning Model

Author:

Tao Sha1ORCID

Affiliation:

1. School of Marxism, Huaibei Normal University, Huaibei, Anhui 235000, China

Abstract

The key sentimental words in the text cannot be paid attention to effectively, and language knowledge such as the text information and the sentimental resources are relied on. Therefore, it is necessary to make full use of this unique sentimental information to achieve the best performance of the model. In order to solve the problems, a method based on the fusion of the convolutional neural network and the bidirectional GRU network text sentiment analysis capsule model to analyze the ideological and political education of public opinion is put forward. In this model, each sentiment category is combined with the attention mechanism to generate feature vectors to construct sentiment capsules. Finally, the text sentiment categories are judged according to the attributes of the capsules. The model is tested on MR, IMDB, SST-5, and the data set of the ideological and political education review. Experimental results show that compared with MC-CNN-LSTM, the readiness rate of the proposed model is improved by 5.1%, 2.8%, 2.8%, and 1.6% on four public Chinese and English data sets, respectively. Compared with LR-Bi-LSTM, NSCL, and multi-Bi-LSTM models, the accuracy of the proposed MC-BiGRU-Capsule model on MR and SST-5 data are 3.2%, 2.4%, and 3.4% higher than that of the LR-Bi-LSTM, NSCL, and multi-Bi-LSTM models, respectively. It also shows a better classification effect on multiclassification data sets. It is concluded that compared with other baseline models, this method has a better classification effect.

Funder

Anhui Provincial Quality Engineering Project

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3