Affiliation:
1. School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
Abstract
Extracting retinal vessels accurately is very important for diagnosing some diseases such as diabetes retinopathy, hypertension, and cardiovascular. Clinically, experienced ophthalmologists diagnose these diseases through segmenting retinal vessels manually and analysing its structural feature, such as tortuosity and diameter. However, manual segmentation of retinal vessels is a time-consuming and laborious task with strong subjectivity. The automatic segmentation technology of retinal vessels can not only reduce the burden of ophthalmologists but also effectively solve the problem that is a lack of experienced ophthalmologists in remote areas. Therefore, the automatic segmentation technology of retinal vessels is of great significance for clinical auxiliary diagnosis and treatment of ophthalmic diseases. A method using SegNet is proposed in this paper to improve the accuracy of the retinal vessel segmentation. The performance of the retinal vessel segmentation model with SegNet is evaluated on the three public datasets (DRIVE, STARE, and HRF) and achieved accuracy of 0.9518, 0.9683, and 0.9653, sensitivity of 0.7580, 0.7747, and 0.7070, specificity of 0.9804, 0.9910, and 0.9885,
score of 0.7992, 0.8369, and 0.7918, MCC of 0.7749, 0.8227, and 0.7643, and AUC of 0.9750, 0.9893, and 0.9740, respectively. The experimental results showed that the method proposed in this research presented better results than many classical methods studied and may be expected to have clinical application prospects.
Funder
Project of Domestic Visiting Scholar
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献