Rapid Determination of Mercury Ions in Environmental Water Based on an N-Rich Covalent Organic Framework Potential Sensor

Author:

Tian Jinjin1ORCID,Zhu Yulin1ORCID

Affiliation:

1. Central South University of Forestry and Technology, Changsha, Hunan Province 410004, China

Abstract

In this article, an N-rich covalent organic framework (COFTFPB-TZT) was successfully synthesized using 4,4′,4′-(1,3,5-triazine-2,4,6-triyl) trianiline (TZT), and 4-[3,5-bis (4-formyl-phenyl) phenyl] benzaldehyde (TFPB). The as-prepared COFTFPB-TZT possesses irregular cotton wool patches with a large specific surface area. A novel selective electrode based on COFTFPB-TZT was used for the determination of Mercury ions. The abundance of N atoms in COFTFPB-TZT provides more coordination sites for Hg2+ adsorption, resulting in a change in the surface membrane potential of the electrode to selectively recognize Hg2+. Under optimal experimental conditions, the ion-selective electrode shows a good potential response to Hg2+, with a linear range of 1.0 × 10−9∼1.0 × 10−4, a Nernst response slope of 30.32 ± 0.2 mV/-PC at 25°C and a detection limit of 4.5 pM. At the same time, the mercury-ion electrode shows a fast response time of 10 s and good reproducibility and stability. The selectivity coefficients for Fe2+, Zn2+, As3+, Cr6+, Cu2+, Cr3+, Al3+, Pb2+, NH4+, Ag+, Ba2+, Mg2+, Na+, and K+ are found to be small, indicating no interference in the detection system. The proposed method can be successfully applied to the determination of Hg2+ in 3 typical environmental water samples, with a recovery rate of 98.6–101.8%. In comparison with the spectrophotometric method utilizing dithizone, the proposed method is simple and fast and holds great potential application prospects in environmental water quality monitoring and other fields.

Funder

Education Department of Hunan Province

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3