Strengthening of Damaged Masonry Walls Using Engineered Cementitious Composites: Experimental and Numerical Analysis

Author:

Renuka S. M.1ORCID,Mervin Sanjith I. P.2ORCID

Affiliation:

1. Division of Structural Engineering, Department of Civil Engineering, Anna University, Chennai 600025, India

2. School of Civil and Structural Engineering, Vellore Institute of Technology, Vellore 600127, India

Abstract

Engineered cementitious composites (ECC) are special types of high-tensile and high-ductility concrete that are designed using a micromechanics approach, with a tensile strain capability of more than 3%. Due to their higher strain hardening capacity, ECC can be applied as a strengthening material on structural walls, which improves the structural strength and inelastic deformation capacity. This study presents an experimental and numerical analysis of brick masonry wall strengthened by traditional mortar, ECC, and ECC with 40% fly ash (FAECC) subjected to uniaxial compression. The tests, such as compressive strength, indirect tensile strength, and bond strength, were conducted. Based on the experimental results, a numerical model is developed, and a failure prediction for the existing masonry structure is made. The compressive strength of ECC is observed to be higher than normal mortar and FAECC whereas the indirect tensile strength of both ECC and FAECC was almost similar, which is higher than that of normal mortar. The bond strength of ECC and FAECC is found to be 70% higher than that of normal mortar. It is evident that brick masonry units strengthened by ECC have a higher compressive strength than masonry units strengthened by conventional mortar and FAECC. It also controls crack development and spalling of masonry units. Then, a micromodelling along with CDP model is made in Abaqus/CAE software and an excellent correlation between experimental and numerical results was noted. The suggested models were shown to be capable of predicting the common behaviour of masonry units.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3