Forecasting Method of Stock Market Volatility Based on Multidimensional Data Fusion

Author:

Zhang Xiaoyong1ORCID,Zhang Li1

Affiliation:

1. College of Economy and Banking, Zhanjiang University of Science and Technology, Zhanjiang, 5240006 Guangdong, China

Abstract

The volatility of the stock market is related to the vital interests of stockholders and is essential for maintaining a stable financial environment. Through the analysis of data changes, excellent professional traders can extract information about the direction of stock changes, whether it is worth investing, and long-term or short-term trading. This article aims to study the forecasting methods of stock market volatility, by integrating multiparty data, in-depth analysis of the direction of data changes, predicting the price changes of the stock market, and better guiding stockholders’ investment. This paper proposes a multisource data fusion method to analyze the stock market price changes and find the best risk prediction method. The experimental results in this paper show that multisource data fusion can better help the stock market predict stock changes and reduce financial investment risks by 20%. Comparing the obtained prediction results with the real data, the MSE predicted by the ARIMA model is calculated to be 2.35. It provides a new idea for effectively analyzing nonstationary time series data with complex trend fusion characteristics by rationally screening feature signals and trend signals and modeling probability distribution.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3