Variable Cell Transmission Model for Mixed Traffic Flow with Connected Automated Vehicles and Human-Driven Vehicles

Author:

Jin Yuting12,Yao Zhihong123ORCID,Han Jiazhe12,Hu Lu123,Jiang Yangsheng123

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

2. National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu, Sichuan 611756, China

3. National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University, Chengdu, Sichuan 611756, China

Abstract

The current research on the mixed traffic flow characteristics of human-driven vehicles (HDVs) and connected automated vehicles (CAVs) mainly focuses on the micro-level. To study the characteristics of the mixed traffic flow from the medium and macro level, this paper proposes a variable cell transmission model (VCTM). First, the fundamental diagram is introduced based on the phenomena of hysteresis of traffic flow. Second, the VCTM with different market penetration rates (MPR) of CAVs is proposed based on the classical cell transmission model (CTM). Then, the effectiveness of VCTM is verified by micro-simulation based on the intelligent driver model (IDM). Finally, some congestion indexes are selected to discuss the characteristics of mixed traffic flow based on the VCTM with an expressway simulation. The results show that the traffic capacity and congestion dissipation capacity gradually are increased with the increase of MPR of CAVs. The homogeneous CAVs traffic flow capacity can reach 1.41 times that of the homogeneous HDVs traffic flow, and the congestion dissipation time can be reduced by 25%. The larger MPR is, the greater the improvement effect is. In addition, compared with CTM, VCTM can reflect the delay, queuing, and dissipation of mixed traffic flow more accurately, which is helpful to capture the evolution mechanism of mixed traffic flow in the future.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3