Affiliation:
1. Institute of Physical Education, Inner Mongolia Normal University, Hohhot 010020, China
Abstract
Track and field is an important part of sports. Track and field athletes are an important reserve force for the development of national sports. An accurate assessment of track and field athletes’ performance can help them develop more appropriate training programs and improve their performance. In order to assess the performance of track and field athletes better, this paper proposes an improved logistic regression method. Firstly, this method uses factor analysis to reduce the data dimensions of the factors that affect the performance of track and field athletes, and uses the principal component analysis to select common factors and their corresponding values. Then, according to the common factors, a binary logistic regression model is established to evaluate the performance of track and field athletes. Experiments show that the method can effectively evaluate the performance of track and field athletes and is suitable for athletes of different track and field sports. It has high accuracy, fast evaluation efficiency, and good universality of performance evaluation. For different numbers of athletes, the proposed method has a lower error evaluation index, higher evaluation accuracy, and better evaluation quality. Compared with the other two methods, the proposed method has the shortest evaluation time and is more effective for the performance evaluation of track and field athletes.
Funder
Natural Science Foundation of Inner Mongolia
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献