Classification of Electrocardiography Hybrid Convolutional Neural Network-Long Short Term Memory with Fully Connected Layer

Author:

Ramachandran Dhanagopal1ORCID,Kumar R. Suresh1,Alkhayyat Ahmed2,Malik Rami Q.3,Srinivasan Prasanna4,Priya G. Guga5,Gosu Adigo Amsalu6ORCID

Affiliation:

1. Centre for System Design, Chennai Institute of Technology, Chennai, Tamil Nadu, India

2. Department of Computer Technical Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq

3. Department of Medical Instrumentation Techniques Engineering, AI-Mustaqbal University College, Hillah 51001, Iraq

4. Department of Information Technology, R.M.D. Engineering College, Kaveripettai, Thiruvallur, Tamil Nadu, India

5. School of Electronics Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India

6. Center of Excellence for Bioprocess and Biotechnology, Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Abstract

Electrocardiography (ECG) is a technique for observing and recording the electrical activity of the human heart. The usage of an ECG signal is common among clinical professionals in the collection of time data for the examination of any rhythmic conditions associated with a subject. The investigation was carried out in order to computerize the assignment by exhibiting the issue using encoder-decoder techniques, creating the information that was simply typical of it, and utilising misfortune appropriation to anticipate standard or anomalous information. On a broad variety of applications such as voice recognition and prediction, the long short-term memory (LSTM) fully connected layer (FCL) and the two convolutional neural networks (CNNs) have shown superior performance over deep learning networks (DLNs). DNNs are suitable for making high points for a more divisible region and CNNs are suitable for reducing recurrence types, LSTMs are appropriate for temporary displays, in the same way as CNNs are appropriate for reducing recurrence types. The CNN, LSTM, and DNN algorithms are acceptable for viewing. The complementarity of DNNs, CNNs, and LSTMs was investigated in this research by bringing them all together under the single architectural company. The researchers got the ECG data from the MIT-BIH arrhythmia database as a result of the investigation. Our results demonstrate that the approach proposed may expressively describe ECG series and identify abnormalities via scores that outperform existing supervised and unsupervised methods in both the short term and long term. The LSTM network and FCL additionally demonstrated that the unbalanced datasets associated with the ECG beat detection problem could be consistently resolved and that they were not susceptible to the accuracy of ECG signals. It is recommended that cardiologists employ the unique technique to aid them in performing reliable and impartial interpretation of ECG data in telemedicine settings.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3