An Approach for Cardiac Coronary Detection of Heart Signal Based on Harris Hawks Optimization and Multichannel Deep Convolutional Learning

Author:

Alsafi Haedar1ORCID,Munilla Jorge1ORCID,Rahebi Javad2ORCID

Affiliation:

1. Department of Telecommunication Engineering, Malaga University, Malaga, Spain

2. Department of Software Engineering, Istanbul Topkapi University, Istanbul, Turkey

Abstract

Automatic diagnosis of arrhythmia by electrocardiogram has a significant role to play in preventing and detecting cardiovascular disease at an early stage. In this study, a deep neural network model based on Harris hawks optimization is presented to arrive at a temporal and spatial fusion of information from ECG signals. Compared with the initial model of the multichannel deep neural network mechanism, the proposed model of this research has a flexible input length; the number of parameters is halved and it has a more than 50% reduction in computations in real-time processing. The results of the simulation demonstrate that the approach proposed in this research had a rate of 96.04%, 93.94%, and 95.00% for sensitivity, specificity, and accuracy. Furthermore, the proposed approach has a practical advantage over other similar previous methods.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3