The Recognition Method of Athlete Exercise Intensity Based on ECG and PCG

Author:

Wang Baiyang1ORCID,Zhu Haiyan1ORCID

Affiliation:

1. Linyi University, Linyi, China

Abstract

Athletes usually arrange their training plans and determine their training intensity according to the coach’s experience and simple physical indicators such as heart rate during exercise. However, the accuracy of this method is poor, and the training plan and exercise intensity arranged according to this method can easily cause physical damage, or the training cannot meet the actual needs. Therefore, in order to realize the reasonable arrangement and monitoring of athletes’ training, a method of human exercise intensity recognition based on ECG (electrocardiogram) and PCG (Phonocardiogram) is proposed. First, the ECG and PCG signals are fused into a two-dimensional image, and the dataset is marked and divided according to the different motion intensities. Then, the training set is trained with a CNN (convolutional neural network) to obtain the prediction model of the neural network. Finally, the neural network model is used to identify the ECG and PCG signals to judge the exercise intensity of the athlete, so as to adjust the training plan according to the exercise intensity. The recognition accuracy of the model on the dataset can reach 95.68%. Compared with the use of heart rate to detect the physical state during exercise, ECG records the total potential changes in the process of depolarization and repolarization of the heart, and PCG records the waveform of the beating sound of the heart, which contains richer feature information. Combined with the CNN method, the athlete’s exercise intensity prediction model constructed by extracting the features of the athlete’s ECG and PCG signals realizes the real-time monitoring of the athlete’s exercise intensity and has high accuracy and generalization ability.

Funder

Shandong Social Science Planning Research Project

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Reference38 articles.

1. Athlete Biological Passport: Need and Challenges

2. Individual system of self-monitoring of the daily motor activity of athletes;R. S. Nagovitsyn;Journal of Human Sport and Exercise,2020

3. Heart rate monitor for athletes in activity;G. Borja

4. Accuracy of commercially available heart rate monitors in athletes: a prospective study

5. Consumer wearable technologies to identify and monitor exercise-related arrhythmias in athletes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multimodal Deep Neural Network for ECG and PCG Classification With Multimodal Fusion;2023 13th International Conference on Information Science and Technology (ICIST);2023-12-08

2. Research on Multimodal Fusion Recognition Method of Upper Limb Motion Patterns;IEEE Transactions on Instrumentation and Measurement;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3