The Antiemetic Effect of Xiao-Ban-Xia-Tang Formula against Cisplatin-Induced Emesis is Mediated through Inhibition of NLRP3 Inflammasome Activation in a Rat Pica Model

Author:

Meng Qi12,Cheng QianQian1,Feng Xiaodi1,Chen Siqi1,Li Yaqi1,Zhang Guanglong1,Nie Ke1ORCID

Affiliation:

1. School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China

2. School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China

Abstract

Xiao-Ban-Xia-Tang (XBXT), a traditional Chinese medicine formula, has been used for the treatment of emesis for nearly 2000 years, but its underlying mechanism is not yet fully clarified. The purpose of this study is to reveal the antiemetic mechanisms of XBXT by focusing on the NLRP3 inflammasome pathway in a chemotherapy-induced rat pica model. The pica model was generated by a single intraperitoneal injection of cisplatin in this study. Consumption of kaolin (a type of clay) and food and body weight were recorded every 24 hours. Cisplatin-induced increase in kaolin consumption (pica) was used to quantify chemotherapy-induced nausea and vomiting (CINV). Tissue from the ileum and antrum was stained with hematoxylin eosin (HE) to observe pathological changes. The levels of reactive oxygen species (ROS) and inflammatory cytokines, including IL-1β and IL-18 in serum, were detected by ELISA. In addition, changes in the NLRP3 inflammasome activation in the ileum and antrum were investigated using western blot and immunofluorescence microscopy. The results showed that oral administration of XBXT and ondansetron inhibited acute and delayed pica and significantly protected against the gastrointestinal pathological injury induced by cisplatin. The levels of ROS, IL-1β, and IL-18 in the serum of cisplatin-treated rats were also remarkably decreased by XBXT and ondansetron. Moreover, we found that XBXT can inhibit cisplatin-induced NLRP3 inflammasome activation. The present study indicates that the inhibition of the NLRP3 inflammasome activation might be one of the potential mechanisms for the therapeutic effects of XBXT against CINV.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3