Intelligent Classification Method of Low Occupancy Big Data Based on Grid Index

Author:

Zhao Haiyan1ORCID,Li Shuangxi2

Affiliation:

1. School of Information Science and Engineering, Tianjin Tianshi College, Tianjin 301700, China

2. School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

Abstract

In order to enhance the load balance in the big data storage process and improve the storage efficiency, an intelligent classification method of low occupancy big data based on grid index is studied. A low occupancy big data classification platform was built, the infrastructure layer was designed using grid technology, grid basic services were provided through grid system management nodes and grid public service nodes, and grid application services were provided using local resource servers and enterprise grid application services. Based on each server node in the infrastructure layer, the basic management layer provides load forecasting, image backup, and other functional services. The application interface layer includes the interfaces required for the connection between the platform and each server node, and the advanced access layer provides the human-computer interaction interface for the operation of the platform. Finally, based on the obtained main structure, the depth confidence network is constructed by stacking several RBM layers, the new samples are expanded by adding adjacent values to obtain the mean value, and the depth confidence network is used to classify them. The experimental results show that the load of different virtual machines in the low occupancy big data storage process is less than 40%, and the load of each virtual machine is basically the same, indicating that this method can enhance the load balance in the data storage process and improve the storage efficiency.

Funder

Tianjin Major Scientific and Technological Research Plan

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3