Rockburst Prediction Based on the KPCA-APSO-SVM Model and Its Engineering Application

Author:

Li Yuefeng1,Wang Chao12ORCID,Xu Jiankun3,Zhou Zonghong12,Xu Jianhui1,Cheng Jianwei3

Affiliation:

1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Yunnan, Kunming 650093, China

2. Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Yunnan, Kunming 650093, China

3. School of Safety Engineering, China University of Mining & Technology, Jiangsu, Xuzhou 221116, China

Abstract

The progress of construction and safe production in mining, water conservancy, tunnels, and other types of deep underground engineering is seriously affected by rockburst disasters. This makes it essential to accurately predict rockburst intensity. In this paper, the ratio of maximum tangential stress of surrounding rock to rock uniaxial compressive strength (σθ/σc), the ratio of rock uniaxial compressive strength to rock uniaxial tensile strength (σc/σt), and the elastic energy index of rock (Wet) were chosen as input indices, and rockbursts were graded as level I (none rockburst), level II (light rockburst), level III (medium rockburst), and level IV (strong rockburst). A total of 104 groups of rockburst engineering samples, collected widely from around the world, were divided into a training set (84 groups of samples) and a test set (20 groups of samples). Based on the kernel principal component analysis (KPCA), the adaptive particle swarm optimization (APSO) algorithm, and the support vector machine (SVM), the KPCA-APSO-SVM model was established. The proposed model showed satisfactory classification performance: the prediction accuracies of the training set and test set were 98.81% and 95%, respectively. In addition, the trained prediction model was applied to five rockburst engineering cases and compared with the BP neural network model, SVM model, and APSO-SVM model. The comparative results show that the KPCA-APSO-SVM model has a higher prediction accuracy; as such, it provides a new reliable method for rockburst prediction.

Funder

Yunnan Provincial Department of Education

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3