Two Effective Strategies to Support Cross-Organization Emergency Resource Allocation Optimization

Author:

Gao Ying1,Liu Cong2ORCID,Zeng Qingtian1ORCID,Duan Hua1

Affiliation:

1. Department of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China

Abstract

Cross-organization emergency resource allocation optimization problem is essential to guarantee a successful emergency disposal, and it has become a research focus of modern emergency management. Generally speaking, there are two possible types of resource allocation scenarios: (1) if the emergency resources are overallocated, on the one hand, parallel execution of independent emergency activities can be supported and the emergency disposal time is reduced; on the other hand, too many idle resources may cause low resource utilization rate, high scheduling overhead, and high cost; and (2) if emergency resources are underallocated, this may lead to resource conflicts and the need for some emergency activities to wait for others to complete, and finally the emergency disposal time may increase. Therefore, reasonable emergency resource allocation strategies are highly desired. To the best of our knowledge, there is no formal approach to support the cross-organization emergency resource allocation issue. To handle this problem, we propose a two-layered framework to facilitate the allocation of limited emergency resources to meet its time constraints with high efficiency. More specifically, a kind of Petri net extended with time, resource, and message information, denoted as CE-net, is presented to model cross-organization emergency response processes. Based on the obtained CE-net, the minimum resource requirements are obtained with corresponding algorithms. Then, Minimum Execution Time (MET) strategy and Minimum Resource Consumption (MRC) strategy with their corresponding estimated execution intervals are introduced to facilitate the stakeholder to determine which strategy is suitable according to the timing requirements. A cross-organization fire emergency case is applied to validate the proposed approaches throughout the whole paper.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3