Affiliation:
1. Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 03 BP 3908 Cotonou, Benin
2. Laboratoire de Science et Technique de l’Eau, Ecole Polytechnique d’Abomey-Calavi, Universite d’Abomey-Calavi, 04 BP 0823 Cotonou, Benin
3. Laboratoire d’Hydrologie Appliquee, Universite d’Abomey-Calavi, BP 526 Abomey-Calavi, Benin
Abstract
Catechol, hydroquinone, and phenol are known to be environmental pollutants due to their ability to generate environmentally free radicals, which cause millions of deaths worldwide. Recently, efforts have been done to precisely identify the origin and the nature of those free radicals employing EPR-LTMI technique. All the three precursors generate cyclopentadienyl radical as major pyrolysis products and phenoxyl radical as both pyrolysis and photolysis products which were obtained from phenol; ortho-semiquinone and para-semiquinone were seen, respectively, from the pyrolysis of catechol and hydroquinone. However, it has been suspected that the solely use of the EPR-LTMI did not allow the isolation of the more labile radicals that is supposedly terminated by radical-radical or radical-surface interaction. The present study reports the gas chromatography mass analysis of the pyrolysis products from catechol, hydroquinone, and phenol. Naphthalene , indene, and hydroxyindene were observed as the pyrolysis products of hydroquinone, while fluorene, 1H-indenol and its isomer 1H-inden-1-one 2,3 dihydro, acenaphthylene, benzofuran-7-methyl, and benzofuran-2-methyl were observed as pyrolysis products of catechol. Dibenzo dioxin and dibenzo furan were observed from pyrolysis of catechol and hydroquinone. Those products result from the combination of radicals such as cyclopentadienyl, para-semiquinone, ortho-semiquinone, hydroxyl-cyclohexadienyl, phenoxyl, and most importantly Hydroxycyclopentadienyl which was not identified by EPR-LTMI.
Funder
National Science Foundation
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献