Prediction the Vapor-Liquid Equilibria of CO2-Containing Binary Refrigerant Mixtures Using Artificial Neural Networks

Author:

Azari Ahmad1,Atashrouz Saeid2ORCID,Mirshekar Hamed2

Affiliation:

1. Chemical Engineering Department, Gas and Petrochemical Engineering Faculty, Persian Gulf University, Bushehr 7516913817, Iran

2. Department of Petrochemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Mahshahr Campus, P.O. Box 415, Mahshahr, Iran

Abstract

Artificial neural network (ANN) technique has been applied for estimation of vapor-liquid equilibria (VLE) for eight binary refrigerant systems. The refrigerants include difluoromethane (R32), propane (R290), 1,1-difluoroethane (R152a), hexafluoroethane (R116), decafluorobutane (R610), 2,2-dichloro-1,1,1-trifluoroethane (R123), 1-chloro-1,2,2,2-tetrafluoroethane (R124), and 1,1,1,2-tetrafluoroethane (R134a). The related experimental data of open literature have been used to construct the model. Furthermore, some new experimental data (not applied in ANN training) have been used to examine the reliability of the model. The results confirm that there is a reasonable conformity between the predicted values and the experimental data. Additionally, the ability of the ANN model is examined by comparison with the conventional thermodynamic models. Moreover, the presented model is capable of predicting the azeotropic condition.

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3