Affiliation:
1. Software Development Center, State Nuclear Power Technology Corporation, Beijing 102209, China
2. School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract
Testing and maintenance activities of safety equipment have drawn much attention in Nuclear Power Plant (NPP) to risk and cost control. The testing and maintenance activities are often implemented in compliance with the technical specification and maintenance requirements. Technical specification and maintenance-related parameters, that is, allowed outage time (AOT), maintenance period and duration, and so forth, in NPP are associated with controlling risk level and operating cost which need to be minimized. The above problems can be formulated by a constrained multiobjective optimization model, which is widely used in many other engineering problems. Particle swarm optimizations (PSOs) have proved their capability to solve these kinds of problems. In this paper, we adopt PSO as an optimizer to optimize the multiobjective optimization problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Numerical results have demonstrated the efficiency of our proposed algorithm.
Subject
Nuclear Energy and Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献